Wednesday, 12 October 2016

Algonquin College presentation

This post is a part of the Manitou Hills Project series.

I recently gave a talk about our off-grid house in conjunction with our architect Anthony Mach. This was a presentation of our house as an example of what can be done with Passive House inspired building principles as well as off grid energy systems.

My slides can be found here, and contains information mostly shown in the blog posts, as well as containing a few new pictures.

Anthony's slides can be found here, and is similar to another set of slides from a past passive house presentation that Anthony gave, found in another blog post.





Friday, 8 April 2016

Some thoughts on architectural and interior design

This post is a part of the Manitou Hills Project series.


From the very beginning of our house building project, I had a lot of ideas about what I wanted to accomplish with the architectural style as well as the interior layout and design. While I think that I would have ended up with mostly good choices by working it out by myself, the assistance of our architect Anthony Mach was invaluable. Even though I had a much clearer notion than many people do going into the early phases, I still often needed that access to an expert opinion about what is doable and how to make all of the parts fit together. And don't even get me started on the process of turning the rough sketches into final blueprints, I still don't have anywhere near the knowledge to be able to put together those technical details.

For any of you who are considering building a custom home, I would recommend that you start by doing what we did, and make a list of things that you require, those that you would like, and those that you just don't want to do. Also take the time to look at lots of pictures, as it always helped us to figure out if something would work by finding a good example. My digital scrapbook of inspiration eventually made it to several hundred pictures. And be prepared to revise that list in the face of budget, practicalities, or even your own changing understanding. Our starting list as of the time that we first met with Anthony was the following:
  • 3 bedroom, 2 bath house
  • Nice screen porch facing the river
  • Upside-down design, with living spaces on the upper level, and the bedrooms on the lower level
  • Passive solar orientation (discussed here and here) with plenty of big windows
  • As compact as possible given what we are trying to fit in, both for energy efficiency as well as to contain costs
  • Superinsulated (discussed here)
  • Timber framed, or otherwise using lots of natural wood
  • Contemporary design with a single pitched shed style roof
  • Resilient design, using well-chosen design details and high quality components, so that house will age well over decades
  • Big stone fireplace with a high efficiency stove insert
We already had a fairly well-developed plan by the time we went to Anthony, so I feel pretty good that out of this initial list, the only item that was dropped was the large stone fireplace. It turns out that doing these the old fashioned way with larger real stones is both very energy inefficient as well as incredibly expensive. It turns out that the vast majority of the 'stonework' that one sees on both the interior and exterior of today's buildings is actually painted concrete. It is relatively thin pieces of veneer that can be added to almost any wall, and the process now yields fairly realistic looking stone. With this entire project I've wanted things to feel as authentic as possible, and fake stone just wasn't something that appealed to me. As the plans developed further, we realized that the simple clean lines of a wood stove and interior stove pipe were just as good of an aesthetic fit while being much better in terms of cost and energy efficiency.



Open concept living


We, along with a lot of others buying and building houses today, wanted an open concept design, with a single great room containing the kitchen, dining, and living spaces. I have heard and read quite a number of things about the growing popularity of the open concept, and it seems that there are two major drivers. The first is a greater desire for families to spend time together. With parents working more hours, kids doing more activities, families want to spend the few hours where everyone is at home together. The other trend is for increasingly casual living arrangements. People no longer want to hide away the mess of the kitchen and to eat in a formal dining room. This fits just about right with our own decision about building this way; this was always intended to be a place for the family to be together. Opening up the living and cooking spaces to each other solve all of these issues, putting everyone all in one space. We ended up with a room of 18'x38' (680 ft 2), which has been fantastic for family time and groups up to about 15 people. We often are cooking and doing cleanup at the same time as we entertain or keep an eye on our young children.



Screen porch
A screen porch was another thing that was at the very top of our list of desired features. In our climate it may only be porch weather for four months of the year, but during that time it is the best place in the house. It turns out that screen porches aren't all that popular here in eastern Canada, and I actually have no idea why. In Minnesota, where I grew up, basically every cabin, and many homes, have screen porches. Granted, the mosquitos are the size of sparrows there, but there isn't exactly a shortage of biting insects here in the region around Ottawa. The bug season makes enclosed spaces awfully appealing for outdoor living throughout the wet northern temperate climates. In a lot of the modern architecture photos and articles that I've looked at, I often see whole walls that open to make indoor/outdoor spaces, and decks and porches seldom seem to have any bug protection. This may work in California, but that sort of design certainly does not fit well in a place where the biting insect season almost completely overlaps the warm months.




Upside-down design
Most multi-story homes have the main living areas on the main floor, with bedrooms above. In a great many cases this really does make the most sense. One can enter the house and go straight into the more public spaces, with the bedrooms tucked away up a staircase. However, it isn't so great if your home has a view that you would like to take advantage of, as those views generally improve the higher one goes, and I don't think that a lot of people spend hours in their bedrooms admiring the views.

In our case, we had a perfect setup to flip the house upside down. We planned from the beginning to have a walkout basement lower level, and we had tremendous views that we wanted to be able to appreciate. Pushing the house into the side of the hill also meant that it was only five steps up from the driveway to the upper level. So while I don't think that it is for everyone, I wouldn't do it any other way if we were building again at this site. The advantages are that we are able to really appreciate the views that our hilltop site affords, the space is much brighter, and it tends to be warmer upstairs which is a boon most of the time (and conversely, the bedrooms stay cooler at all times of the year which I appreciate when I sleep). All that said, there is one significant drawback - even with some insulation to deaden the footfalls, it can be difficult to stay asleep downstairs when there is a 3 year old running wind sprints back and forth above your head at 6:00 in the morning.



 The downstairs


Our downstairs is then taken up by three bedrooms, one full bath, and mechanicals/storage space. We kept the bedrooms to a relatively modest size, each at about 12'x12'. This is big enough to have a full set of bedroom furniture but leaves relatively little room to spare. Some people now put in massive bedroom suites, but it seems to me that bedrooms are mostly just for sleeping and not for hanging out. And just to show that I'm not entirely self-consistent, I've included a picture below of the windows that we put into the master bedroom. I couldn't resist taking advantage of the view even if we don't spend that much time in there appreciating it.



Contemporary style
There are dozens of popular styles for homes, such as Prairie, Tudor, Craftsman, and many others. Though there are some cultural and climatic reasons for choosing one style over another, the better part of the decision making comes down to aesthetic choices. Through all phases of the design process, I spent a good deal of time looking at architectural and design websites, articles, magazines, and photos. I was particularly drawn to aspects of the contemporary style, and so making the decision really came down to that appeal. To really dig into the sort of places that I found inspirational, I found even more tightly defined terms like "modern rustic" or "mountain contemporary". These styles really have become quite popular with those who build nice houses out in the woods, fields, and mountains. Staying within a given style lends a sense of continuity to a home, from the inside to the outside, and from room to room, though there are certainly some eclectic homes that stand the test of time as well. If you search around for terms like these in architectural magazines and websites, you'll find no shortage of examples that have a similar feel to our own place, relatively modern looking with lots of natural wood, stone, and big windows to take in the views. I just hope that in 20 or 30 years time that our choices don't look as dated as all of the 70's lime green, orange, and dark faux wood paneling that my parents installed when they built their own cottage back in the day.

A few of the most influential architects and builders on our aesthetic choices are the following:
  • Finne Architects. Extremely high end custom contemporary homes. They are absolutely beautiful, but I don't even want to know what the costs are. Nils Finne and his team make a large amount of built ins, custom furniture, and unique designs for each and every project.
  • Method Homes. A prefabricated home builder. Some of their home styles are quite architecturally similar to our own final design.
  • Go Logic, particularly this passive house they built.
Use of large dimension timbers
My wife and I both love natural wood finishes, and I am exceptionally fond of the bigger timbers used in timber framing. However, in the earlier part of our own design process, I learned why there are so few timber frames being built today. First, building with big timbers is expensive. The wood costs are significantly more, but so are the costs of cutting the traditional joinery (needed before the easy availability of strong metal nails and screws). Second, it is quite difficult to insulate a timber frame building. The most common way of doing so is to build the house twice; first build the timber frame, then build another full wall and roof assembly outside of that which can be insulated normally. At the same time, the timbers are beautiful. Many people generate a similar look with false beams or wrapping regular construction lumber in naturally finished boards, but just like what I mentioned about faux stone above, I find that many of these attempts can end up looking inauthentic or cheap.


With all this in mind, we found a few places in our home where big dimensional timbers made a bit more sense, using a building method commonly called a 'hybrid' timber frame. The first location was our screen porch. Here, there aren't any issues of insulation to deal with, as the whole structure is just a shell to keep out insects, with cedar floors, plexiglass lower panels to prevent anyone from falling through, and screen above. Second, we used big beams to hold the roof trusses on the big overhangs. We put 4' overhangs around the entire home, and though there are multiple ways to support this sort of detail, we did so with large douglas fir beams, on which all of the roof trusses rest (see the time lapse installation video here for a look at the work the fir beams do for the roof). Finally we used white pine beams for the floor joists and supporting beam for the second story. We were going to need to put in joists anyway, so we decided to use 4"x8" joists, and a 10"x12" supporting beam. This provides a beautiful ceiling for the entire downstairs level, and should be rock-solid for the lifetime of the house.  So for the heavy beams that we included, they all serve very functional purposes, which felt like an important thing to me, that it was not simply decoration. For all of our timber work, we used simpler joints held together by screws rather than the traditional mortise and tenon joinery, which allowed all of the installation to go much more quickly.



Building for resilience:
Finally, I want to make some comments about building for the long-term. So many decisions in home building (and too many other domains as well) are made looking only at the short term. For builders, it usually makes the most sense to build the most inexpensive construction that they can get away with, and then invest more on those parts of a home that really catch the eye of the buyers, like the fancy kitchen, spa type bathroom, or big walk-in closets. People don't tend to be very good at evaluating what is behind the final finishes, nor are they good at imagining what the future maintenance, replacement, utility bills, or other costs will be for a home. Further, people only own a given home for an average of 13 years, so any feature that doesn't do well on the resale market is less likely to make it into the average home.

This is of course not a complete picture. The building code improves steadily, requiring constantly better insulation, air sealing, air quality and more. And there is a growing trend toward green building, emphasizing reduced energy use and healthier indoor air. Unfortunately, these are still relatively niche markets, and the average new home being built is far less than it could be.

For our own project, we built a place that we hope to never have to sell during a lifetime, and if things go really well, our kids will continue to use it even after we are gone. With those kind of goals in mind, it is much easier to think about a 50 year time frame, and to be able to justify the costs of doing things 'right' the first time around. If we've succeeded at this, we may have very little maintenance and renovation work to do on the house itself for decades to come. Only time will tell us if we succeeded. So rather than discuss all of the details individually, I just include a long list of the details that we included for the sake of long-lasting quality.
  • Steel through fastened roof. Should last in excess of 50 years
  • 4' overhangs on all sides of the building. Reduces the exposure of the siding and base of the house to sun, rain, and snow, which should extend the lifetime of the siding.
  • Great drainage and waterproofing around the house. Should keep all water away from the foundation indefinitely
  • Poured concrete foundation rather than cement block. Much longer lasting, and much more resistant to the elements
  • Low maintenance landscaping and plantings, should require little to no watering or fertilizer. 
  • Cement board siding. Though after learning more, I would likely go with steel siding for the entire building. Steel has the same pros of fire and pest resistance, but has lower embodied energy, lasts longer and is more easily recycled
  • Real wood (white pine and sugar maple) for the trim, flooring, staircase and wooden interior doors. These should last much longer than hollow or fiberboard materials and can easily be refurbished rather than replaced if they receive any abuse
  • Low and zero volatile organic compounds (VOCs) in all of the paints and other finishes. These allow for much improved air quality, and I expect to see indoor air quality standards to become much more strict than they are today
  • Superinsulated, most insulation being mineral wool (Roxul)



Saturday, 2 April 2016

My go-to list of Resources on building practices and renewable energy

In thinking and researching issues of energy, green building practices, architecture, and more, I find that there are a number of sites that I find myself visiting very regularly. I thought that I would share that set here, for anyone else who is exploring similar paths.

Renewable energy, developments and analysis:
  • Cleantechnica. This is a renewable energy news posting site, putting up perhaps a dozen stories a day on solar, wind, batteries, and electric vehicles, both at the consumer and utility scale.
  • Ramez Naam's blog. This blog is not limited to only energy issues, but there are a series of excellent blog posts about the past and future of wind, solar and battery technologies. Of particular interest to me are the estimates that he makes for future price decreases for these renewable energy technologies.
Architecture and green building design:
  • Dwell. This is a magazine and website dedicated to modern and contemporary home design. Though they discuss green building some, I mostly look at this site for design inspiration and the eye candy of photo spreads of interesting homes.
  • Ecohome. A local (to me) organization that tries to increase the use of a variety of green building practices. Some of the guys from Ecohome also did our LEED certification.
  • Green Building Advisor. Green building design articles and forums. Very comprehensive and this site is frequented by many green building professionals. This site features many excellent articles, though some of their best material is behind a paywall.
  • Houzz. This site has perhaps the most extensive database of photos of homes, inside and out, in just about every style. I used this site extensively in the planning phases of our home in order to both find inspiration as well as to find photos that illustrate ideas that I thought of.
  • Inhabitat. A website that features all manner of sustainable ideas, though I go there mostly for the architecture section. The articles are sometimes overly commercial and often too light on details, but it is a very good place to keep track of new developments in sustainable thinking.
  • One Step Off the Grid. An Australian website about renewable energy, especially solar power. This is also one of the few sites that I have found with relatively extensive information about going off grid that is fully up to date with upcoming new technologies. In case you weren't aware, Australia has turned into a hotbed for solar and even off-grid adoption largely due to the twin facts of great climate for solar (high sun, moderate temperatures) and high utility power costs.  
Books that I would recommend on these topics:
Organizations of Interest:








Tuesday, 15 March 2016

Energy model of the house

This post is a part of the Manitou Hills Project series. 

We didn't originally plan to do any formal energy modeling for our home. It actually only came about because of our relatively last-minute decision to seek LEED certification. One requirement of the LEED process is to do an evaluation of the energy efficiency of a home, and this includes a fairly complete description of the building's size, orientation, insulation, electrical appliances, etc. Using all of this disparate information and applying some standard assumptions about how a typical family uses a home (e.g., amount of hot showers, thermostat temperature, etc.), energy modelers are able to put together estimates of total energy use for a home.

Below is our "Home Energy Rating Certificate",  which shows the overall estimates, including the major details about the home, the systems, and expected energy use. To boil a house down to a single number, many efficiency experts use the HERS rating. This is an evaluation of how much energy the modeled house uses as compared to a house that just meets the 2006 International Energy Conservation Code. Climate and house size are controlled for, so as to be better about comparing apples to apples. As you can see in the certificate, our home achieved a HERS score of 23, whereas the reference home is always counted as 100. While I won't actually go through the calculation, this number is the percentage of energy that the modeled home uses as compared to the reference, with an adjustment for self-generation of power through things like our PV panels. In comparison to the 'standard' home, our place brings the energy demand down by over 70%.



The rough breakdowns in energy use in kWh/year are the figures that I find most interesting here. Our home is projected to use a grand total of 19271 kWh/year, with 4785 kWh coming from electricity produced by the solar panels, with the balance of 15465 kWh provided by propane.

So how does this compare to our actual use for the year of 2015 (well, November of 2014 to November of 2015)? During that time, we used exactly 400 gallons of propane, for a total of 10,800 kWh of energy. We also burned about half of a cord of maple and oak firewood, which provided roughly 3000 kWh of heat. The best measure of our solar electric use is actually the energy used by plug loads during the year, of 1400 kWh. This figure is actually a significant underperformance for our expected solar electric contribution for a couple of reasons. First, the batteries didn't age well in their first year of use due to some overly deep discharge in their first months of service, and second, that more power was 'wasted' than expected, as excess power cannot be saved if it is not used and the batteries are full. I am putting together a system to use some of that excess power and will write about it once it is up and running. Needless to say, this puts our actual energy usage for the year at 15,200 kWh, much less than the model-predicted figure of 19271 kWh. This is no surprise, as we are inhabiting the home only about half of the time, and probably taking less showers and using less technological toys than the average household. I would imagine that if we were there full-time that our actual energy usage would end up quite similar to the model's projections.

Another interesting set of details that came out of the modeling were estimates of heat loss through all of the different components of the housing envelope (See below - First document in English, followed by a more detailed one in French. Some of the text in the English is wrong in the columns but correct in the chart). To stay in kWh, I'll work with the numbers from the French document. The total amount of heat needed from the active heating systems is 9286 kWh (25% of the reference home). Part of the reason this figure is so low is due to the passive solar heat gain coming through all of the windows, to the tune of 4306 kWh/year. Putting these figures together shows that over 31% of the total heating needed for this home is accomplished by sun streaming in the windows. I've taken just enough of a look at the passive solar heating literature to know that this is roughly as high as one should go with passive solar heating in a home unless one is willing to endure unwelcome overheating on warm sunny days in the winter and spring. Even with our place, I am finding that on bright sunny days in February and March that the upstairs of the house can exceed 30 degrees Celsius (86 Fahrenheit) with the heating turned off. I have actually found it to be good for the spirit to be able to open the windows and wear shorts on those blue bird days in February.

The other great thing about this heating breakdown is that it shows how much heat loss to expect from each component of the home. It is no surprise that the above grade walls are the biggest component, since they make up much more surface area than any other part of the home. The walls would have been one of the most expensive parts of the home to upgrade, due to the amount of materials needed to cover that much area. The next highest contributor is air infiltration, at 2783 kWh/year. When the house was half-complete a blower door test showed that we had an air-tightness of 1.47 ACH@50Pa, but as I outlined in this post, the house is probably tighter now and this heat loss lower than the model suggests.

The concrete slab and foundation walls, at 2314 kWh and 1435 kWh respectively, are probably the only places that I wish I would have added insulation. It would not have been that difficult or expensive to add thicker layers of rigid foam insulation, and I'm fairly sure that it would have been cost-effective to do this upgrade. I guess that one advantage of the current state of things is that the downstairs bedrooms are always cooler through the summer, making sleeping comfortable even on the hottest days of the summer without any air conditioning.







The Power of Solar
I just wanted to reiterate one more time the usefulness of both active and passive solar in reducing the need for other, usually fossil fuel, sources of energy. If we were to eliminate the solar gain through the windows and disconnect the solar panels, the model suggests that we would need 24,550 kWh/year of power from propane, or 909 gallons. However, we already get 4306 kWh of heat through the windows. The above models also don't account for the new solar panels added this fall, which together with the original installation could produce about 9850 kWh of power per year . As I alluded to above, I am in the middle of putting together a system to use up much of this excess electric power for space heating in the winter and domestic hot water heating in the summer. If I were able to put all of this excess capacity to use, this would mean our total needs from propane drop to a projected 9074 kWh. Considering that we already use much less energy than the model projects, my hope is to cut propane use for next year from 400 gallons to 250 gallons or less. With continually improving technology and dropping prices, I can already see the day arriving, perhaps 15 or 20 years down the road, when it may be possible for us, and off-grid homes in locations like ours, to ditch the propane without breaking the bank. I'm looking forward to that day, when I have all of my energy needs met from the sun shining down from above.

So how close is our home to meeting the 'Passive House' standard?
One of the original inspirations for our home was the Passive House standard. I've discussed this a bit in another blogpost, but briefly, this is a standard for vastly reducing the energy needed to heat and power a home. That standard allows for 15 kWh/m2 of heating per year, which is quite difficult to meet for a single family home in the climate here in Ottawa, Canada. Even with all of the things that we did to build a better home, the model still suggests that we are at 47 kWh/m2 per year, so nearly 3 times the amount allowed for Passive House certification. There are just a small handful of homes that have reached this certification in eastern Canada, and some of the professionals that I've spoken to around here think that such a low heating requirement isn't currently a reasonable goal in our climate. It is much colder here than in the area where these standards originated (mostly in Germany), where this number makes more sense. Here, the local homes that are pursuing certification need to have walls roughly two feet thick. We felt that it made more sense here to build a 'pretty good' house, and then make up some of the difference through such means as renewables. In the future, it is almost certainly going to become easier to meet and exceed the Passive House standard, as green building techniques improve and become more widely known, and as technological innovations continue to produce better products.

Monday, 15 February 2016

Technical presentation about the house

This post is a part of the Manitou Hills Project series. 

Anthony Mach, the architect that we worked with on our house, gave a presentation about our house in the spring of 2014, covering some of the basics of passive homes, passive solar design rules, and how our house fits with these design principles. This presentation was given to an architectural design class at the school, and acted in many ways as an introduction to green and high efficiency building for these students. Rather than explain it further, I will let the slides from his presentation speak for themselves, see the pdf linked here.

Tuesday, 5 January 2016

Mechanical and other home systems for our off grid home

This post is a part of the Manitou Hills Project series. 

In years past, the mechanical systems and appliances within off grid homes looked quite different from typical grid tied homes. Electricity generation was extremely difficult and expensive at the home scale, so there was much less electrification. Instead, off gridders used other technologies like wood stoves, kerosene lamps, and propane powered appliances.

One can still find most of these electricity-light home systems, including such things propane lighting and propane powered refrigerators. However, these systems are made at such a small scale and are in such small demand, that they are quite expensive and do not perform incredibly well. Thankfully, an off grid house today can maintain essentially all the comforts of on-grid living, as long as one is careful about making choices. Two trends have allowed this to happen. First, solar power generation and storage is falling quickly in price, and it is now possible to have a regular supply of electricity at a home for a manageable cost. The second trend is large increases in efficiency of all of the electronics used in our homes. The normal, high efficiency, often Energy Star approved, appliances and other electronics of today use just a fraction of the power of their predecessors.

Put all of these trends together, and it is now possible to use all off the shelf products from standard stores, as long as the most efficient of available options are chosen. The one thing that is difficult to do with electricity in an off-grid home is heating. Whether it be home heating, water heating, the kitchen range, clothes dryer, all of these are energy hogs and do not affordable in today's off grid home. In our case, we use propane to do most of this heavy lifting (though I hope to eliminate the propane at some point in the future). Below is a run-down of all of the systems that we have put into our home.

Range
We have a propane range, one of the basic models that was available at the local Sears (the Kenmore 5.0 cu. ft. Freestanding Gas Range w/ Variable Self-Clean, Model #74132). This unit has 5 burners on top, and propane burners at both the bottom and top of the oven. This unit does require some electricity for full functionality. The range has electronic sparkers to light the burners, though these can be lit with a match or lighter if there is no power. The oven, however, requires a larger and more constant supply of power, as a heating element stays on at all times when the oven is heating. I have not been able to find the exact power draw for the stove heating element, but I think that it is around 200 or 300 watts. It would have saved a bit of electricity if there were a pilot light inside the oven, but these models are getting harder to find and are apparently not always as safe as the electrically controlled ovens.

Refrigerator
A refrigerator is one of those modern conveniences that would be very difficult to live without. And with refrigerated and frozen foods, it isn't possible to turn off the power when you are away, unless you empty out the whole thing. As I mentioned above, one can run a refrigerator on propane, but these units leave something to be desired when compared against a typical fridge. Thankfully we produce enough electricity to keep a fridge powered. We have a Kenmore 596.6938, a 20 cubic foot model that is rated to consume 459 kWh/year. There are a few fridges that have power consumption as low as 350 kWh/year (less than 1 kWh/day), but they were a bit small for a family that does some entertaining.

Dishwasher
We wouldn't have needed a dishwasher necessarily, but it is a nice convenience. We picked up an energy star rated Kenmore model 630, which Energuide lists as a 269 kWh/year expected power usage. We generally only run when full, and t requires approximately 1 kWh per load of dishes washed when run on 'eco' mode.

Clothes washer
We chose a high efficiency front-loading washer, again by Kenmore. This is one of the more efficient models available. Front loading washers tend to outperform top loading models, and provide one additional benefit - an extra powerful spin cycle. By spinning at several thousand RPMs, the vast majority of the water is pulled out of the clothes before one even takes them out of the washer. This allows a very quick air drying, hung either outside on a line, or in the house on racks. We decided that it would not be worthwhile to try to add a dryer. Electric units consume too much electricity, gas dryers are more expensive, and we already were getting most of the drying done by the high speed spin cycle.

Air handling
In any tightly built house, one needs to provide for ventilation. In older and draftier homes, a lot of air leaks into and out of a house just through little cracks around joints, windows, and doors, but with new high efficiency construction there is a strong risk of the air getting stale. Our home ended up very tight (see past post here), so we needed mechanical ventilation. This is accomplishted by a heating recovery ventilator (HRV), which serves two purposes. First, the HRV circulates stale air out of the house while bringing fresh air in. All sorts of gases can build up inside homes, from cooking, off-gassing from materials, even simple human habitation, and these are vented to the outside when bringing in fresh air. Second, an HRV exchanges heat from the venting air with incoming air in a heat exchanger. This allows the home to hold onto more heat in the winter, and keep out some of the heat in the summer. We settled on the LifeBreath 155 Max, which sized nicely to our air circulation needs, while consuming only 40 watts on the low setting.

Lighting 
Just in the last 3-4 years, there has been a sea change in lighting, as LED technologies have become cost-competitive with the compact fluorescents and incandescents that came before. While still somewhat more expensive than these other choices, LEDs last much longer (often estimated around 20 years), and consume only a fraction of the energy.  We put in all LED lighting to minimize electricity use. Some of it is in specialized fixtures, but most of it is screw in or pin type bulbs, and this was only a bit more expensive than other options available. When lighting up the house at night, the total lighting loads seldom exceed 100 watts.

Water heating
We use propane to do our domestic hot water heating, with an indirect water heater powered by our propane boiler (see post about our heating system here). Our boiler has a set of heating loops that come off of it, and one of those loops goes inside the water tank. A heat exchanger consisting of a set of copper coils containing the heated glycol pass heat to the domestic water in the tank. Because this setup uses a relatively powerful boiler when heating the water, it is actually able to provide continuous hot water for such things as bathing. The water heater is set up to take precedence over space heating, so there is always a good supply of hot water.

Phone and internet system
While it was appealing to have no phone or internet at our home in the woods, it wasn't practical. Both my wife's and my work depend on being internet connected, and it can often be important to be able to make phone calls. However, since we are so far off the beaten path, we have no phone lines, and only a very weak cellular signal at our home. To remedy this situation, it took a few different steps. The good news was that the phone and internet systems combined require less than 10 watts to keep a constant and high quality connection.

To improve the cell phone reception, I set up a cellular signal booster which consists of several parts. First, there is an antenna mounted to the outside of the house which is pointed at the nearest cell tower about 5 miles away. From this antenna, a coaxial cable is run into the home into a cell signal amplifier, which is a box about the size of a typical modem. This is then connected to an interior antenna. When one uses a cell phone, the signal is received by the interior antenna, passing through the amplifier and exterior antenna to communicate with the cell tower. This system actually works very well, bringing the signal from one that is so weak that calls often cannot be connected, up to a very strong signal (5 out of 5 bars of reception listed on the phone).

To have a ready internet connection, we connected a cellular modem. This works just like any other modem, but instead of connecting through telephone or cable wires, it communicates over the cellular network just like a smartphone. Our local phone provider has a 'family plan' for data sharing, which we now share between smart phones for myself and my wife, as well as with the wifi network created by the cellular modem. Data is more expensive this way than through a wired connection, but as long as we don't use the network for high bandwidth activities such as video streaming, it works very well.